FSD Fluor™ 488 NHS ester

Catalog No. KOSC1002
PACKING UNIT

price

Lead time
1 mg $265.00
5 mg $1,050.00
25 mg $3,280.00
  • option

Total

$0

Description

FSD Fluor™ 488 NHS ester is the new generation of amine reactive bright green dye developed by BioActs’ cutting-edge technology displaying excellent optical property comparing to spectrally similar dyes. The fluorescence intensity after binding to biomolecules such as antibody, nucleotide, and protein is also excellent, thus FSD Fluor™ series is ideal for various biochemical and biological analytical applications. FSD dye is conceivably the best existent dye for single-molecular detection of bioconjugates for fluorescence correlation spectroscopy and for fluorescence polarization measurements.The maxima of Ex/Em values are at 495/519 nm, similar to that of Fluorescein. FSD 488 might be excited using 488 nm laser line and displays excellent optical property. FSD 488 can be conjugated to low-abundance biomolecules with great sensitivity and high molar ratios, allowing sensitive detection. NHS esters readily react with amine-modified oligonucleotides or amino groups of proteins, i.e. the ε-amino groups of lysine or the amine terminus of nucleotides to form a chemically stable amide bond between dye and the biomolecule. We offer FSD Fluor™ 488 NHS ester for labeling of antibodies, peptides, proteins, ligands, and amplification substrates optimized for cellular labeling and detection. 

Specifications

Fluorophore: FSD Fluor™ 488

Reactive group: NHS ester

Excitation/Emission Max.(nm): 495/519

Spectrally similar dyes: Alexa 488, FITC, Cy2, Flamma®496

Extinction coefficient: ≥ 64,000 cm-1M-1

CF280: 0.11

Appearance: Orange Solid

Molecular Weight: 633.56 g/mol

Solubility: DMF

Storage conditions: -20 ℃, protect from light

Citation & Reference

1. Lim, Chang-Keun. Phthalocyanine-aggregated polymeric nanoparticles as tumor-homing near-infrared absorbers for photothermal therapy of cancer. Theranostics 2.9 (2012): 871-879.


2. Park, Jin Woo. Novel cyanine dyes with vinylsulfone group for labeling biomolecules. Bioconjugate chemistry 23.3 (2012): 350-362.


3. Lim, Chang-Keun. Gadolinium-coordinated elastic nanogels for in vivo tumor targeting and imaging. Biomaterials 34.28 (2013): 6846-6852.


4. Keunsoo Jeong. Poly (oxyethylene sugaramide) s: unprecedented multihydroxyl building blocks for tumor-homing nanoassembly. Journal of Materials Chemistry B 1.28 (2013): 3437-3442.


5. Lee, So Jin. TNF-α gene silencing using polymerized siRNA/thiolated glycol chitosan nanoparticles for rheumatoid arthritis. Molecular Therapy 22.2 (2014): 397-408.


6. Yoon, Hong Yeol. Photo-crosslinked hyaluronic acid nanoparticles with improved stability for in vivo tumor-targeted drug delivery. Biomaterials 34.21 (2013): 5273-5280.


7. Park, Solji. Amphiphilized poly (ethyleneimine) nanoparticles: a versatile multi-cargo carrier with enhanced tumor-homing efficiency and biocompatibility. Journal of Materials Chemistry B 3.2 (2015): 198-206.


8. Lee, Eunjung. Co-delivery of chemosensitizing siRNA and an anticancer agent via multiple monocomplexation-induced hydrophobic association. Journal of Controlled Release 210 (2015): 105-114.


9. Xu, Peisheng. Zwitterionic chitosan derivatives for pH-sensitive stealth coating. Biomacromolecules 11.9 (2010): 2352-2358.


10. Ibrahim, Basma M. A strategy to deliver genes to cystic fibrosis lungs: a battle with environment. Journal of controlled release 155.2 (2011): 289-295.


11. Oh, Keun Sang. Accurate sequential detection of primary tumor and metastatic lymphatics using a temperature-induced phase transition nanoparticulate system. International journal of nanomedicine 9 (2014): 2955.


12. Yhee, Ji Young. Tumor-targeting transferrin nanoparticles for systemic polymerized siRNA delivery in tumor-bearing mice. Bioconjugate chemistry 24.11 (2013): 1850-1860.


13. Yoon, Hong Yeol. Glycol chitosan nanoparticles as specialized cancer therapeutic vehicles: Sequential delivery of doxorubicin and Bcl-2 siRNA. Scientific reports 4 (2014).


14. Ryu, Ju Hee. Early diagnosis of arthritis in mice with collagen?induced arthritis, using a fluorogenic matrix metalloproteinase 3–specific polymeric probe. Arthritis & Rheumatism 63.12 (2011): 3824-3832.


15. Hollis, Christin P. In vivo investigation of hybrid paclitaxel nanocrystals with dual fluorescent probes for cancer theranostics. Pharmaceutical research 31.6 (2014): 1450-1459.


16. Koo, Heebeom. The movement of self-assembled amphiphilic polymeric nanoparticles in the vitreous and retina after intravitreal injection. Biomaterials 33.12 (2012): 3485-3493.


17. Zhu, Lei. Real-time monitoring of caspase cascade activation in living cells. Journal of controlled release 163.1 (2012): 55-62.


18. Yoon, Hong Yeol. Bioreducible hyaluronic acid conjugates as siRNA carrier for tumor targeting. Journal of Controlled Release 172.3 (2013): 653-661.


19. Yhee, Ji Young. Cancer-targeted MDR-1 siRNA delivery using self-cross-linked glycol chitosan nanoparticles to overcome drug resistance. Journal of Controlled Release 198 (2015): 1-9.


20. Park, Jin Woo. Wide-Ranged Fluorescent Molecular Weight Size Markers for Electrophoresis. Bulletin of the Korean Chemical Society 34.1 (2013): 29-30.


21. Huang, Xinglu. Multiplex Imaging of an Intracellular Proteolytic Cascade by using a Broad Spectrum Nanoquencher. Angewandte Chemie International Edition 51.7 (2012): 1625-1630. 

OPTION

Added cart

장바구니 아이콘

We put the items
in the shopping cart.