Description

Flamma® Fluors 749 NHS ester is a reactive form of near infrared (NIR) fluorescent dye induced from cyanine structure and used to generate a stable fluorescence signal in bioimaging. The maxima of Ex/Em values are at 749/774 nm, similar to that of Alexa 750, Cy7.5, IRDye 750 and Dylight 755. Flamma 749 might be excited using the 750 nm laser line or dye-pumped laser excitation and the emission occurs at biological tissue permeable NIR region. Flamma 749-conjugated primary and secondary antibody are used as molecular probes for in vitro imaging and other fluorescence detection methods. NHS esters readily react with amine-modified oligonucleotides or amino groups of proteins, i.e. the ε-amino groups of lysine or the amine terminus of nucleotides to form a chemically stable amide bond between dye and the biomolecule. We offer Flamma Fluors 749 dye for labeling of antibodies, peptides, proteins, ligands, and amplification substrates optimized for in vitro imaging.  

Specifications

Fluorophore: Flamma® Fluors 749

Reactive group: NHS ester

Excitation/Emission Max.(nm): 749/774 

Spectrally similar dyes: Alexa750, DyLight755, Cy7.5, IRDye750

Extinction coefficient: ≥ 200,000 cm-1M-1

CF280: 0.03

Appearance: Green Solid

Molecular Weight: 807.97 g/mol   

Solubility: water, DMF, DMSO

Storage conditions: -20 ℃, protect from light



Citation & Reference

1. Xu, Peisheng. Zwitterionic chitosan derivatives for pH-sensitive stealth coating. Biomacromolecules 11.9 (2010): 2352-2358.


2. Ibrahim, Basma M. A strategy to deliver genes to cystic fibrosis lungs: a battle with environment. Journal of controlled release 155.2 (2011): 289-295.


3. Oh, Keun Sang. Accurate sequential detection of primary tumor and metastatic lymphatics using a temperature-induced phase transition nanoparticulate system. International journal of nanomedicine 9 (2014): 2955.


4. Yhee, Ji Young. Tumor-targeting transferrin nanoparticles for systemic polymerized siRNA delivery in tumor-bearing mice. Bioconjugate chemistry 24.11 (2013): 1850-1860.


5. Yoon, Hong Yeol. Glycol chitosan nanoparticles as specialized cancer therapeutic vehicles: Sequential delivery of doxorubicin and Bcl-2 siRNA. Scientific reports 4 (2014).


6. Ryu, Ju Hee. Early diagnosis of arthritis in mice with collagen?induced arthritis, using a fluorogenic matrix metalloproteinase 3–specific polymeric probe. Arthritis & Rheumatism 63.12 (2011): 3824-3832.


7. Hollis, Christin P. In vivo investigation of hybrid paclitaxel nanocrystals with dual fluorescent probes for cancer theranostics. Pharmaceutical research 31.6 (2014): 1450-1459.


8. Koo, Heebeom. The movement of self-assembled amphiphilic polymeric nanoparticles in the vitreous and retina after intravitreal injection. Biomaterials 33.12 (2012): 3485-3493.


9. Zhu, Lei. Real-time monitoring of caspase cascade activation in living cells. Journal of controlled release 163.1 (2012): 55-62.


10. Yoon, Hong Yeol. Bioreducible hyaluronic acid conjugates as siRNA carrier for tumor targeting. Journal of Controlled Release 172.3 (2013): 653-661.


11. Yhee, Ji Young. Cancer-targeted MDR-1 siRNA delivery using self-cross-linked glycol chitosan nanoparticles to overcome drug resistance. Journal of Controlled Release 198 (2015): 1-9.


12. Park, Jin Woo. Wide-Ranged Fluorescent Molecular Weight Size Markers for Electrophoresis. Bulletin of the Korean Chemical Society 34.1 (2013): 29-30.


13. Huang, Xinglu. Multiplex Imaging of an Intracellular Proteolytic Cascade by using a Broad?Spectrum Nanoquencher. Angewandte Chemie International Edition 51.7 (2012): 1625-1630. 

OPTION

Added cart

장바구니 아이콘

We put the items
in the shopping cart.